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Solving elliptic equations with sharp-edged interfaces is a challenging problem for most
existing methods, especially when the solution is highly oscillatory. Nonetheless, it has
wide applications in engineering and science. An accurate and efficient method is desired.
We propose an efficient non-traditional finite element method with non-body-fitting grids
to solve the matrix coefficient elliptic equations with sharp-edged interfaces. Extensive
numerical experiments show that this method is second order accurate in the L1 norm
and that it can handle both sharp-edged interface and oscillatory solutions.
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1. Introduction

The importance of elliptic interface problems has been well recognized in a variety of disciplines, such as electromagnet-
ics, material science, fluid dynamics and so on. However, designing highly efficient methods for these problems is a difficult
job because of the low global regularity of the solution. Since 1977, after the pioneering work of Peskin [14], much attention
has been paid to the numerical solution of elliptic equations with discontinuous coefficients and singular sources on regular
Cartesian grids. In many studies, simple Cartesian grids are preferred. In this way, the complicated procedure of generating
an unstructured grid can be bypassed, and we can use well developed fast algebraic solvers.

The ‘‘immersed boundary” method [14,15] uses a numerical approximation of the d-function, which smears out the solu-
tion on a thin finite band around the interface C. In [16], the ‘‘immersed boundary” method was combined with the level-set
method, resulting in a first order numerical method that is simple to implement, even in multiple spatial dimensions. How-
ever, for both methods, the numerical smearing at the interface forces continuity of the solution at the interface, regardless of
the interface condition [u] = a, where a might not be zero.

In [11,12], a fast method for solving Laplace’s equations on irregular regions with smooth boundaries was introduced. By
using Fredholm integral equations of the second kind, solutions can be extended to a rectangular region. Since solutions are
harmonic, Fredholm integral equations can be used to capture the jump conditions in the solution and its normal derivative,
[u] – 0 and [un] = 0. Then these jump conditions are used to evaluate the discrete Laplacian, and then a fast Poisson solver on
a regular region can be applied with second or higher order accuracy.

In [5], the ‘‘immersed interface” method was presented. This method achieves second order accuracy by incorporating the
interface conditions into the finite difference stencil in a way that preserves the interface conditions in both solution and its
co-normal derivative, [u] – 0 and [bun] – 0. The corresponding linear system is sparse, but not symmetric or positive defi-
nite. Various applications and extensions of the ‘‘immersed interface” method are discussed in [8].
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In [20], a finite element method was developed for solving elliptic problems with the interface conditions [u] = 0 and
[bun] – 0. Interfaces are aligned with cell boundaries. Second order accuracy was obtained in an energy norm. Nearly second
order accuracy was obtained in the L2 norm.

In [6], a fast iterative method in conjunction with the ‘‘immersed interface” method has been developed for constant coef-
ficient problems with the interface conditions [u] = 0 and [bun] – 0. Non-body-fitting Cartesian grids are used, and then asso-
ciated uniform triangulations are added on. Interfaces are not necessarily aligned with cell boundaries. Numerical evidence
shows that this method’s conforming version achieves second order accuracy in the L1 norm, and higher than first order for
its non-conforming version.

The boundary condition capturing method [9] uses the Ghost fluid method (GFM) [2] to capture the boundary conditions.
The GFM is robust and simple to implement, and so is the resulting boundary condition capturing method. The boundary
condition capturing method has been sped up by a multi-grid method [17]. The convergence proof for the method is pro-
vided in [10]. The boundary condition capturing method can be obtained from discretizing the weak formulation provided
in [10]. The convergence proof follows naturally. The method can solve the elliptic equation with interface conditions [u] – 0
and [bun] – 0 in two and three dimensions. However, the original version is only first order accurate. In a recent work [25],
the method is improved to second order accuracy for smooth interfaces.

In [4], a non-traditional finite element formulation for solving elliptic equations with smooth or sharp-edged interfaces
was proposed with non-body-fitting grids for [u] – 0 and [bun] – 0. It achieved second order accuracy in the L1 norm for
smooth interfaces and about 0.8th order for sharp-edged interfaces. In [21], the matched interface and boundary (MIB)
method was proposed to solve elliptic equations with smooth interfaces. In [19], the MIB method was generalized to treat
sharp-edged interfaces. With an elegant treatment, second order accuracy was achieved in the L1 norm. However, for oscil-
latory solutions, the errors degenerate. Also, there has been a large body of work from the finite volume perspective for
developing high order methods for elliptic equations in complex domains, such as [22,23] for two dimensional problems
and [24] for three dimensional problems. Another recent work in this area is a class of kernel-free boundary integral (KFBI)
methods for solving elliptic BVPs, presented in [18].

In this paper, inspired by the boundary condition capturing method [9] and the weak formulation derived in [10], we fur-
ther generalize the method introduced in [4]. We use a finite element formulation for solving elliptic equations with sharp-
edged interfaces with b being uniformly elliptic (therefore, positive definite) and lower order terms present. We provided
proofs for the generalized version of the theorems in [10], and we proved the resulting linear system is (unsymmetric)
positive definite if b is positive definite and lower order terms are not present. We also provided extensive numerical exper-
iments. Compared with the previous work in [4], we improved the order of accuracy for sharp-edged interface from 0.8th to
close to second order, see Example 4. Compared with the results in [19], the more oscillatory the solution is, the more advan-
tageous our method is, see Examples 1–3. The orders of accuracy for different regularity of solutions and different regularity
of the interface are listed in Table 11.

2. Equations and weak formulation

Consider an open bounded domain X � Rd. Let C be an interface of co-dimension d � 1, which divides X into disjoint open
subdomains, X� and X+, hence X = X�

S
X+ S C. Assume that the boundary @X and the boundary of each subdomain @X±

are Lipschitz continuous as submanifolds. Since @X± are Lipschitz continuous, so is C. A unit normal vector of C can be de-
fined a.e. on C, see Section 1.5 in [3].

We seek solutions of the variable coefficient elliptic equation away from the interface C given by
�5 �ðbðxÞ 5 uðxÞÞ þ pðxÞ � 5uðxÞ þ qðxÞuðxÞ ¼ f ðxÞ; x 2 X n C ð1Þ
in which x = (x1, . . .,xd) denotes the spatial variables and 5 is the gradient operator. The coefficient b(x) is assumed to be a
d � d matrix that is uniformly elliptic on each disjoint subdomain, X� and X+, and its components are continuously differ-
entiable on each disjoint subdomain, but they may be discontinuous across the interface C. The right-hand side f(x) is as-
sumed to lie in L2(X).

Given functions a and b along the interface C, we prescribe the jump conditions
½u�CðxÞ � uþðxÞ � u�ðxÞ ¼ aðxÞ
ðb5 uÞ � n½ �CðxÞ � n � ðbþðxÞ 5 uþðxÞÞ � n � ðb�ðxÞ 5 u�ðxÞÞ ¼ bðxÞ

�
ð2Þ
The ‘‘±” superscripts refer to limits taken from within the subdomains X±.
Finally, we prescribe boundary conditions
uðxÞ ¼ gðxÞ; x 2 @X ð3Þ
for a given function g on the boundary @X.
We generalize the weak formulation in [4] for the elliptic equation with matrix coefficient and lower order terms present.

We are going to use the usual Sobolev spaces H1(X). For H1
0ðXÞ, instead of the usual inner product we choose one which is

better suited to our problem:



B½u;v � ¼
Z

Xþ
b5 u � 5v þ

Z
X�

b5 u � 5v þ
Z

Xþ
ðp � 5uÞv þ

Z
X�
ðp � 5uÞv þ

Z
Xþ

quv þ
Z

X�
quv ð4Þ
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Remark. For general second order elliptic equations with lower order p,q terms, one of the hypotheses of the Lax–Milgram
Theorem is not guaranteed. For detailed discussion about the energy estimates and a first existence theorem for weak
solutions, see [1]. Although we provide a numerical example with p – 0, q – 0 in Section 4, for ease of theoretical discussion,
we assume p = 0, q = 0 for the rest of this section as well as in the next section.

Eq. (4) without the p, q terms induces a norm on H1
0ðXÞ which is equivalent to the usual one, thanks to the Poincare

inequality and the uniformly ellipticity and boundedness of b(x) on X.
Let C be any closed Lipschitz continuous hyper-surface of dimension d � 1 in X, where the overline denotes the closure of

a set. Let R denote the restriction operator from H1(X) to L2(@X�). This restriction operator R is well defined and bounded,
because it is closed Lipschitz continuous (see Theorem 2.4.2 in [13]) and C1ðXÞ is dense in H1(X). Throughout this section, we
shall always assume that our interface data a and b are the restrictions of functions ~a and ~b 2 H1ðXÞ on @X� and then limited
on C, respectively. That is on C,
a ¼ R@X� ð~aÞ; b ¼ R@X� ð~bÞ ð5Þ
We shall always assume that our boundary data g can be obtained: Assume that there exist a function ~c 2 H1ðXÞ so that g is
given as, on @X,
g ¼
R@Xð~c � ~aÞ; on @X

T
@X�

R@Xð~cÞ; on @X n @X�
�

ð6Þ
Eq. (6) could be thought as a compatibility condition between a and g. To simplify the notation, from now on we will drop the
tildes.

We will construct a unique solution of the problem in the class
Hða; cÞ ¼ fu : u� c þ avðX�Þ 2 H1
0ðXÞg ð7Þ
If u 2 H(a,c), then [u]C = a and uj@X = g. Note that H1
0ðXÞ can be identified with H(0,0).

Definition 2.1. A function u 2 H(a,c) is a weak solution of Eq. (1)–(3), if v ¼ u� c þ avðX�Þ 2 H1
0ðXÞ satisfies
B½v;w� ¼ FðwÞ ð8Þ
for all w 2 H1
0ðXÞ, where
B½v;w� ¼
Z

Xþ
b5 v � 5wþ

Z
X�

b5 v � 5w ð9Þ

FðwÞ ¼
Z

X
f wþ

Z
X

b5 c � 5wþ
Z

X�
b5 a � 5wþ

Z
C

bw ð10Þ
Or equivalently
Definition 2.2. A function u 2 H(a,c) is a weak solution of Eq. (1)–(3), if u satisfies, for all w 2 H1
0ðXÞ,
Z

Xþ
b5 u � 5wþ

Z
X�

b5 u � 5w ¼
Z

X
f wþ

Z
C

bw ð11Þ
A classical solution of Eq. (1)–(3), ujX� 2 C2ðX�Þ is necessarily a weak solution. Because all the subdomains’ boundaries
@X± are Lipschitz continuous, the integration by parts are legal in each subdomain, X±, see Theorem 1.5.3.1 in [10].

We have the following theorem:

Theorem 2.1. If f 2 L2(X), and a, b, and c 2 H1(X), then there exists a unique weak solution of Eq. (1)–(3) in H(a,c).
Proof. See Theorem 2.1 in [4]. h
3. Numerical method

For ease of discussion in this section, and for accuracy testing in the next section, we assume that a, b and c are smooth on
the closure of X, b and f are smooth on X+ and X�, but they may be discontinuous across the interface C. However, @X, @X�

and @X+ are kept to be Lipschitz continuous. We assume that there is a Lipschitz continuous and piecewise smooth level-set
function / on X, where C = {/ = 0}, X� = {/ < 0} and X+ = {/ > 0}. A unit vector n ¼ 5/

j5/j can be obtained on X, which is a unit
normal vector of C at C pointing from X� to X+.
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In this paper, we restrict ourselves to a rectangular domain X = (xmin,xmax) � (ymin,ymax) in the plane, and b is a 2 � 2
matrix that is uniformly elliptic in each subdomain. Given positive integers I and J, set Dx = (xmax � xmin)/I and Dy =
(ymax � ymin)/J. We define a uniform Cartesian grid (xi,yj) = (xmin + iD x,ymin + jDy) for i = 0, . . ., I and j = 0, . . ., J. Each (xi,yj) is
called a grid point. For the case i = 0, I or j = 0, J, a grid point is called a boundary point, otherwise it is called an interior point.
The grid size is defined as h = max(Dx,Dy) > 0.

Two sets of grid functions are needed and they are denoted by
H1;h ¼ fxh ¼ ðxi;jÞ : 0 6 i 6 I;0 6 j 6 Jg
and
H1;h
0 ¼ fxh ¼ ðxi;jÞ 2 H1;h : xi;j ¼ 0 if i ¼ 0; I or j ¼ 0; Jg
We cut every rectangular region [xi,xi+1] � [yj,yj+1] into two pieces of right triangular regions: one is bounded by x =
xi,y = yj and y ¼ yjþ1�yj

xi�xiþ1
ðx� xiþ1Þ þ yj, and the other is bounded by x = xi+1,y = yj+1 and y ¼ yjþ1�yj

xi�xiþ1
ðx� xiþ1Þ þ yj. Collecting all

those triangular regions, we obtain a uniform triangulation Th :
S

K2Th K , see Fig. 1. We can also choose the hypotenuse to

be y ¼ yjþ1�yj

xiþ1�xi
ðx� xiÞ þ yj, and get another uniform triangulation from the same Cartesian grid. There is no conceptual differ-

ence for our method on these two triangulations.
If /(xi,yj) 6 0, we count the grid point (xi,yj) as in X�; otherwise we count it as in X+. We call an edge (an edge of a triangle

in the triangulation) an interface edge if two of its ends (vertices of triangles in the triangulation) belong to different sub-
domains; otherwise we call it a regular edge.

We call a cell K an interface cell if its vertices belong to different subdomains. In the interface cell, we write K = K+ S K�.
K+ and K� are separated by a straight line segment, denoted by Ch

K . The two end points of the line segment Ch
K are located on

the interface C and their locations can be calculated from the linear interpolations of the discrete level-set functions
/h ¼ /ðxi; yjÞ. The vertices of K+ are located in X+ S C and the vertices of K� are located in X�

S
C. K+ and K� are approxi-

mations of the regions of K
T

X+ and K
T

X�, respectively. We call a cell K a regular cell if all its vertices belong to the same
subdomain, either X+ or X�. For a regular cell, we also write K = K+ S K�, where K� = {} (empty set) if all vertices of K are in
X+, and K+ = {} if all vertices of K are in X�. Clearly Ch

K ¼ fg in a regular cell, and K+ and K� are approximations of the regions
K
T

X+ and K
T

X�, respectively. We use jK+j and jK�j to represent the areas of K+ and K�, respectively.
Two extension operators are needed. The first one is Th : H1;h ! H1

0ðXÞ. For any wh 2 H1;h
0 , Th(wh) is a standard continuous

piecewise linear function, which is a linear function in every triangular cell and Th(wh) matches wh on grid points. Clearly
such a function set, denoted by H1;h

0 , is a finite dimensional subspace of H1
0ðXÞ. The second extension operator Uh is con-

structed as follows. For any uh 2 H1,h with uh = gh at boundary points, Uh(uh) is a piecewise linear function and matches uh

on grid points. It is a linear function in each regular cell, just like the first extension operator Uh(uh) = Th(uh) in a regular cell.
In each interface cell, it consists of two pieces of linear functions, one is on K+ and the other is on K�. The location of its dis-
continuity in the interface cell is the straight line segment Ch

K . Note that two end points of the line segment are located on the
interface C, and hence the interface condition [u] = a could be and is enforced exactly at these two end points. In each inter-
face cell, the interface condition [b5u�n] = b is enforced with the value b at the middle point of Ch

K . Clearly such a function is
not continuous in general, and neither is the set of such functions a linear space. We denote the set of such functions as H1;h

a;c ,
which should be thought as an approximation of the solution class H(a,c) (see Eq. (7)) plus the restriction of [b5u�n] = b. Sim-
ilar versions of such extension can be found in the literature [7,9]. In order to use this extension, we need the following
theorem.

Theorem 3.1. For all uh 2 H1,h,Uh(uh) can be constructed uniquely, provided Th,/, a and b are given.
Proof. There are three typical cases for Uh(uh).

Case 0. If K is a regular triangle, see Fig. 2, Uh(uh) = Th(uh), i.e.,
Fig. 1. A uniform triangulation.
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UhðuhÞ ¼ uðp1Þ þ
uðp2Þ � uðp1Þ

4x
ðx� xiÞ þ

uðp3Þ � uðp1Þ
4y

ðy� yiÞ ð12Þ
Case 1. If K is an interface triangle, and the interface C is cutting through two legs of K, see Fig. 3, then
UhðuhÞ ¼
uðp1Þ þ uþx ðx� xiÞ þ uþy ðy� yiÞðx; yÞ 2 Kþ

uðp2Þ þ u�x ðx� xi �4xÞ þ u�y ðy� yiÞðx; yÞ 2 K�

(
ð13Þ

� �

Here u�y ¼

uðp3Þ�uðp2Þ
4y þ 4x

4y u�x . In Fig. 3, ~n ¼ � dyffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2þdy2
p ; � dxffiffiffiffiffiffiffiffiffiffiffiffiffi

dx2þdy2
p .(
uþx ¼
uðp4Þþa�uðp1Þ

dx

uþy ¼
uðp5Þþa�uðp1Þ

dy

ð14Þ
In Fig. 4, we assume that the extensions of p3p5 and p2p4 intersect at a ghost point called pG
1 , therefore
uðpG
1 Þ�uðp4Þ

dx ¼ uðp4Þ�uðp2Þ
4x�dx

uðpG
1 Þ�uðp5Þ

dy ¼ uðpG
1 Þ�uðp3Þ
4y

8<
: ð15Þ
and
u�x ¼
uðp2Þ�uðp4Þ
4x�dx

u�y ¼
uðp3Þ�uðp5Þ
4y�dy

(
ð16Þ
Fig. 2. Case 0: the regular cell.

Fig. 3. Case 1: the interface cutting through two legs of a triangle.

Fig. 4. Case 1: the ghost point.
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From Eqs. (15) and (16), we can get
uðpG
1Þ ¼

dx
4x� dx

ðuðp4Þ � uðp2ÞÞ þ uðp4Þ ð17Þ

uðp5Þ ¼ uðpG
1Þ �

dy
4y
ðuðpG

1Þ � uðp3ÞÞ ð18Þ
Let
b ¼
b11 b12

b21 b22

� �
ð19Þ
From Eqs. (14)–(19), note that u�x ; u�y ; uþx and uþy can all be written as linear functions of u(p1),u(p2),u(p3) and u(p4). Since
b ¼ b5 u �~n, we can obtain
b ¼ bþ 5 uþ �~n� b� 5 u� �~n

¼ bþ11uþx n1 þ bþ12uþy n1 þ bþ21uþx n2 þ bþ22uþy n2 � b�11u�x n1 þ b�12u�y n1 þ b�21u�x n2 þ b�22u�y n2

� �
ð20Þ
From Eqs. (14)–(20), we can obtain the value of u(p4). It is a linear function of u(p1),u(p2),u(p3). Hence u�x ; u�y ; uþx and uþy can
be written in the following form
uþx ¼ cþx;1uðp1Þ þ cþx;2uðp2Þ þ cþx;3uðp3Þ þ cþx;4aðp4Þ þ cþx;5aðp5Þ þ cþx;6bðp6Þ;

uþy ¼ cþy;1uðp1Þ þ cþy;2uðp2Þ þ cþy;3uðp3Þ þ cþy;4aðp4Þ þ cþy;5aðp5Þ þ cþy;6bðp6Þ;

u�x ¼ c�x;1uðp1Þ þ c�x;2uðp2Þ þ c�x;3uðp3Þ þ c�x;4aðp4Þ þ c�x;5aðp5Þ þ c�x;6bðp6Þ;

u�y ¼ c�y;1uðp1Þ þ c�y;2uðp2Þ þ c�y;3uðp3Þ þ c�y;4aðp4Þ þ c�y;5aðp5Þ þ c�y;6bðp6Þ: ð21Þ
To complete the proof, for Case 1, we need the following lemma: h
Lemma 3.1. All coefficients c in Eq. (21) are finite and independent of uh,a and b.
Proof. From above discussion, it is easy to see that all coefficients c are independent of uh,a and b.
Below we prove that cþx;3 is finite. The proofs for the other coefficients are similar.
cþx;3 ¼ a½� bþ12dyþ bþ22dx
� 	

dyð4x� dxÞ þ b�12dyþ b�22dx
� 	

dyð4x� dxÞ� ð22Þ
where 1
a ¼ bþ11dy þ bþ21dx

� 	
4 yð4x � dxÞdy þ bþ12dy þ bþ22dx

� 	
4 xð4y � dyÞdx þ b�11dy þ b�21dx

� 	
4 ydxdy þ b�12dy þ b�22dx

� 	
4xdxdy.

cþx;3 could be thought as a function of dx and dy. It is smooth on [0,4x] � [0,4y] except one point (dx,dy) = (0,0). It is easy
to see that if dx = 0 and dy – 0 or dx – 0 and dy = 0, cþx;3 ¼ 0. Now denote k = dy/dx 2 (0, +1), and rewrite it as
cþx;3 ¼ a0 �ðbþ12kþ bþ22Þkð4x� dxÞ þ b�12kþ b�22

� 	
kð4x� dxÞ


 �
ð23Þ
where 1
a0 ¼ bþ11kþ bþ21

� 	
4 yð4x� dxÞkþ bþ12kþ bþ22

� 	
4 xð4y� kdxÞ þ b�11kþ b�21

� 	
k4 ydxþ b�12kþ b�22

� 	
k4 xdx

Let dx go to zero. Then
cþx;3 ¼
� bþ12kþ bþ22

� 	
kþ b�12kþ b�22

� 	
k

bþ11kþ bþ21

� 	
k4 yþ bþ12kþ bþ22

� 	
4 y

¼
� bþ12kþ bþ22

� 	
kþ b�12kþ b�22

� 	
k

k 1ð Þ
bþ11 bþ12

bþ21 bþ22

 !
k

1

 !
4 y

ð24Þ
Since bþ11 bþ12
bþ21 bþ22

� �
is uniformly elliptic, the denominator is always positive. Further, both the numerator and the denominator

are quadratic functions of k. For k going to infinity, the limit of the fraction is finite. Therefore, cþx;3 is finite.

Case 2. If K is an interface triangle, and the interface C is cutting through one leg and the hypotenuse of K, see Fig. 5, then
UhðuhÞ ¼
uðp2Þ þ uþx ðx� xi �4xÞ þ uþy ðy� yiÞðx; yÞ 2 Kþ

uðp1Þ þ u�x ðx� xiÞ þ uðp3Þ�uðp1Þ
4y ðy� yiÞðx; yÞ 2 K�

(
ð25Þ



7168 S. Hou et al. / Journal of Computational Physics 229 (2010) 7162–7179
Similar derivation as in Case 1 gives
uþx ¼ dþx;1uðp1Þ þ dþx;2uðp2Þ þ dþx;3uðp3Þ þ dþx;4aðp4Þ þ dþx;5aðp5Þ þ dþx;6bðp6Þ;
uþy ¼ dþy;1uðp1Þ þ dþy;2uðp2Þ þ dþy;3uðp3Þ þ dþy;4aðp4Þ þ dþy;5aðp5Þ þ dþy;6bðp6Þ;
u�x ¼ d�x;1uðp1Þ þ d�x;2uðp2Þ þ d�x;3uðp3Þ þ d�x;4aðp4Þ þ d�x;5aðp5Þ þ d�x;6bðp6Þ;
u�y ¼ d�y;1uðp1Þ þ d�y;2uðp2Þ þ d�y;3uðp3Þ þ d�y;4aðp4Þ þ d�y;5aðp5Þ þ d�y;6bðp6Þ: ð26Þ
To complete the proof, for Case 2, we need the following lemma: h
Lemma 3.2. All coefficients d in Eq. (26) are finite and independent of uh,a and b.
Proof. The proof is the same as the proof of Lemma 3.1, and is omitted here.
From the above discussion, we complete the proof of Theorem 3.1 and all coefficients c and d are independent of uh,a and

b. h

Based on the above discussion, we propose the following method:
Method 3.1 Find a discrete function uh 2 H1,h such that uh = gh on boundary points and so that for all wh 2 H1;h

0 , we have
X
K2Th

Z
Kþ

b5 UhðuhÞ � 5ThðwhÞ þ
Z

K�
b5 UhðuhÞ � 5ThðwhÞ

� �
¼
X
K2Th

Z
Kþ

fThðwhÞ þ
Z

K�
fThðwhÞ þ

Z
Ch

K

bThðwhÞ
 !

ð27Þ
Note that u = g on the boundary is the same as u� c þ avðX�Þ ¼ 0 on the boundary.
For the general case with p – 0,q – 0, integral for these lower order terms could be added to the above weak formulation.
To implement the above method, we use the Gaussian quadrature rule for integrals. The idea is illustrated in Fig. 6. If T is

separated into two pieces by the interface u4u5, we connect u3 and u4, then we get three triangles: T1 = Mu1u4u5,T2 =
Mu2u3u4,T3 = Mu3u4u5. For each triangle, we label the center point pij of each edge uiuj. In numerical computation, we apply
the average of three f(pij) in each triangle. Numerical results show an improvement over [4], where fewer sample points were
used.

Since our solution bases and test function bases are different, the matrix A for the linear system generated by Method 3.1
is not symmetric in the presence of an interface. However, we can prove it is positive definite.

Theorem 3.2. If b is positive definite, p = q = 0, then the n � n matrix A for the linear system generated by Method 3.1 is positive
definite.
Fig. 5. Case 2: the interface cutting through a leg and a hypotenuse of a triangle.

Fig. 6. Quadrature.
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Proof. For any vector c 2 Rn,
cT Ac ¼
Xn

i;j¼1

aijcicj ¼ B
Xn

i¼1

ciui;
Xn

i¼1

ciw
i

" #
where ui and wi are basis functions for the solution and the test function, respectively. Note that they have compact support
and have nonzero values only inside the six triangles around the ith grid point. For ease of discussion, we decompose each of
ui and wi into six parts, so that each part has nonzero values only inside one triangle. Now the summation over i is equivalent
to a summation over all the triangles, and there are three terms, c1u1 + c2u2 + c3u3, c1w1 + c2w2 + c3w3 for each triangle,
where u1,u2,u3,w1,w2,w3 equals 1 on one vertex of a triangle and zero on two other vertices. The difference between ui

and wi is, ui depends on the location of the interface and wi does not. c1u1 + c2u2 + c3u3 is a piecewise linear function satisfying
the jump conditions and c1 w1 + c2w2 + c3w3 is a linear function. At the three vertices, the two functions coincide. Now we can
set the jump conditions a = 0 and set b to have the value in the triangle such that c1 u1 + c2u2 + c3u3 = c1w1 + c2w2 + c3w3

everywhere. In other words, we compensate for the jump in b by using b to make sure the gradients on both sides of the
interface coincide. Since Lemmas 3.1 and 3.2 imply the matrix A is independent of a, b, choosing the above a, b would not
change the matrix A and would only change the constant term, i.e., the right-hand side of the linear system. Now when
we sum over all the triangles, we have
Xn

i¼1

ciui ¼
Xn

i¼1

ciw
i

It now follows from the positive definiteness of b that
cT Ac ¼ B
Xn

i¼1

ciui;
Xn

i¼1

ciui

" #
> 0
Therefore, A is positive definite. h
Remark 1. A positive definite matrix has positive determinant, and is therefore, invertible. It also has an LDMT factorization
where D = diag(di) and di > 0 and L,M are lower triangular. The linear system Ax = b can be solved efficiently.
Remark 2. For ease of discussion, we dropped both the p,q terms early. However, the Lax–Milgram Theorem, our Theorems
2.1 and 3.2 all work for the case p = 0 and q > 0 as well. For the case with nonzero p or negative q, the positive definiteness of
A is no longer guaranteed, nor is one of the hypotheses of the Lax–Milgram Theroem.
4. Numerical experiments

Consider the problem
�r � ðbruÞ þ p � ruþ qu ¼ f ; in X�;

½u� ¼ a; on C;

½ðbruÞ � n� ¼ b; on C;

u ¼ g;on @X;
on the rectangular domain X = (xmin,xmax) � (ymin,ymax). C is an interface and prescribed by the zero level-set {(x,y) 2X j /
(x,y) = 0} of a level-set function /(x,y). The unit normal vector of C is n ¼ r/

jr/j pointing from X� = {(x,y) 2X j /(x,y) 6 0} to
X+ = {(x,y) 2X j /(x,y) P 0}.

In all numerical experiments below, the level-set function /(x,y), the coefficients b±(x,y), p±(x,y), q±(x,y) and the solutions
u ¼ uþðx; yÞ; in Xþ;

u ¼ u�ðx; yÞ; in X�
are given. Hence
f ¼ �r � ðbruÞ þ p � ruþ qu;

a ¼ uþ � u�;

b ¼ ðbþruþÞ � n� ðb�ru�Þ � n
on the whole domain X. g is obtained as a proper Dirichlet boundary condition, since the solutions are given.
All errors in solutions are measured in the L1 norm in the whole domain X. All errors in the gradients of solutions are

measured in the L1 norm away from interfaces.
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For Examples 1–10, we let p(x,y) = q(x,y) = 0 and we let b± be scalars. We implemented Method 3.1. For Example 11, b± are
symmetric positive definite matrices, and we modified Method 3.1 by adding the integrals for lower order p,q terms. As we
discussed in Section 2, in this general case, one of the hypotheses of the Lax–Milgram Theorem is not guaranteed. However,
since we constructed the true solution first, the existence of a weak solution is automatically guaranteed. The numerical re-
sult is promising.

Examples 1–3 are taken from [19]. Compared with the result in [19], if the true solution does not have oscillation, as in
Example 1, due to the elegant treatment in [19] for the sharp-edged interface, they obtained smaller error than ours for the
same grid; however, as shown in Examples 2, 3, as the solution gets more oscillatory, our method is superior as we obtained
better results than those presented in [19].

Example 1. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ðr; hÞ ¼ R sinðht=2Þ
sinðht=2þ h� hr � 2pði� 1Þ=5Þ � r

hr þ pð2i� 2Þ=5 6 h < hr þ pð2i� 1Þ=5;

/ðr; hÞ ¼ R sinðht=2Þ
sinðht=2� hþ hr � 2pði� 1Þ=5Þ � r

hr þ pð2i� 3Þ=5 6 h < hr þ pð2i� 2Þ=5;
with ht = p/5, hr = p/7, R = 6/7 and i = 1,2,3,4,5.
bþðx; yÞ ¼ 1;
b�ðx; yÞ ¼ 2þ sinðxþ yÞ;
uþðx; yÞ ¼ 8;

u�ðx; yÞ ¼ x2 þ y2 þ sinðxþ yÞ
Fig. 7 shows the numerical solution with our method using 40 grid points in both x and y directions. Table 1 shows the error
on different grids.

Example 2. The level-set function / is the same as in Example 1, the coefficients b± and the solution u± are given as follows:
bþðx; yÞ ¼ 1;
b�ðx; yÞ ¼ 2þ sinðxþ yÞ;
uþðx; yÞ ¼ 6þ sinð2pxÞ sinð2pyÞ;
u�ðx; yÞ ¼ x2 þ y2 þ sinðxþ yÞ
Fig. 8 shows the numerical solution with our method using 40 grid points in both x and y directions. Table 2 shows the error
on different grids.
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Fig. 7. Star: Case 1.



Table 1
Star: Case 1.

nx � ny Err in U Order

20 � 20 4.082e-3
40 � 40 1.135e-3 1.8466
80 � 80 3.12e-4 1.8631
160 � 160 8.4e-5 1.8931
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Fig. 8. Star: Case 2.

Table 2
Star: Case 2.

nx � ny Err in U Order

20 � 20 4.054e-2
40 � 40 1.058e-2 1.9380
80 � 80 2.496e-3 2.0836
160 � 160 6.31e-4 1.9839
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Example 3. The level-set function / is the same as in Example 1, the coefficients b± and the solution u± are given as follows:
bþðx; yÞ ¼ 1;
b�ðx; yÞ ¼ 2þ sinðxþ yÞ;
uþðx; yÞ ¼ 6þ sinð6pxÞ sinð6pyÞ;
u�ðx; yÞ ¼ x2 þ y2 þ sinðxþ yÞ
Fig. 9 shows the numerical solution with our method using 40 grid points in both x and y directions. Table 3 shows the error
on different grids.
Example 4. This example is from [4], and our solution is more accurate than the previous work due to the quadrature rule
discussed in Section 3. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ðx; yÞ ¼ ðsinð5pxÞ � yÞð� sinð5pyÞ � xÞ;
bþðx; yÞ ¼ xyþ 2;

b�ðx; yÞ ¼ x2 � y2 þ 3;

uþðx; yÞ ¼ 4� x2 � y2;

u�ðx; yÞ ¼ x2 þ y2
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Fig. 9. Star: Case 3.

Table 3
Star: Case 3.

nx � ny Err in U Order

20 � 20 3.402e-1
40 � 40 8.879e-2 1.9379
80 � 80 2.331e-2 1.9294
160 � 160 5.675e-3 2.0383
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Fig. 10 shows the numerical solution of the method using 40 grid points in both x and y directions. Table 4 shows the error on
different grids. Compared with [4], we improved the order of accuracy from 0.8th order to close to second order, and for the
same grid size, the error of our method is significantly smaller.

Examples 5–10 are taken from [4]. We use these six cases to investigate the order of the error in u and ru on solutions
and interfaces with different regularity.
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Fig. 10. Chess board.



Table 4
Chess board.

nx � ny Err in U Order Err in rU Order

40 � 40 9.74e-4 4.650e-3
80 � 80 2.71e-4 1.8051 3.454e-3 0.4290
160 � 160 9.4e-5 1.5276 1.433e-3 1.2692
320 � 320 2.6e-5 1.8541 6.89e-4 1.0565
41 � 39 9.36e-4 5.356e-3
81 � 79 2.58e-4 1.8591 3.144e-3 0.7686
161 � 159 7.7e-5 1.7444 1.390e-3 1.1775
321 � 319 2.2e-5 1.8074 6.47e-4 1.1032
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Example 5. The level-set function /, the coefficients b± and the solution u± are given as follows. The interface is C1 but not C2

and u is C2 but not C3:
Table 5
About s

nx �

41 �
81 �
161
321
/ðx; yÞ ¼ y� 2x; xþ y > 0

/ðx; yÞ ¼ y� ð2xþ x2Þ; xþ y 6 0
bþðx; yÞ ¼ ðxyþ 2Þ=5;

b�ðx; yÞ ¼ ðx2 � y2 þ 3Þ=7;
uþðx; yÞ ¼ 2;
u�ðx; yÞ ¼ sinðxþ yÞ; xþ y 6 0
u�ðx; yÞ ¼ xþ y; xþ y > 0
Fig. 11 shows the numerical solution with our method using a 41 � 39 grid. Table 5 shows the error on different grids.
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Fig. 11. Interface is C1 but not C2 and u is C2 but not C3.

econd order in u and first order in ru.

ny Err in U Order Err in rU Order

39 1.18e-4 6.614e-4
79 3.5e-5 1.7534 3.77e-4 0.8101
� 159 1.0e-5 1.8074 2.17e-4 0.7969
� 319 2.0e-6 2.3219 1.18e-4 0.8789
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Example 6. The level-set function /, the coefficients b± and the solution u± are given as follows. The interface is C1 but not C2

and u� is piecewise C1:
Table 6
About fi

nx �

41 �
81 �
161
321
/ðx; yÞ ¼ y� 2x; xþ y > 0

/ðx; yÞ ¼ y� ð2xþ x2Þ; xþ y 6 0
bþðx; yÞ ¼ ðxyþ 2Þ=5;

b�ðx; yÞ ¼ ðx2 � y2 þ 3Þ=7;
uþðx; yÞ ¼ 2;
u�ðx; yÞ ¼ sinðxþ yÞ þ cosðxþ yÞ; xþ y 6 0
u�ðx; yÞ ¼ xþ yþ 1; xþ y > 0
Fig. 12 shows the numerical solution with our method using a 41 � 39 grid. Table 6 shows the error on different grids.
Example 7. The level-set function /, the coefficients b± and the solution u± are given as follows. The interface is C1 but not C2

and u is piecewise H2:
/ðx; yÞ ¼ y� 2x; xþ y > 0

/ðx; yÞ ¼ y� ð2xþ x2Þ; xþ y 6 0
bþðx; yÞ ¼ 1;
b�ðx; yÞ ¼ 2þ sinðxþ yÞ;
uþðx; yÞ ¼ 8;

u�ðx; yÞ ¼ ðx2 þ y2Þ5=6 þ sinðxþ yÞ
Fig. 13 shows the numerical solution with our method using an 81 � 41 grid. Table 7 shows the error on different grids.
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Fig. 12. Interface is C1 but not C2 and u� is piecewise C1.

rst order in u and 0.8th order in ru.

ny Err in U Order Err in rU Order

39 1.169e-3 1.574e-2
79 6.03e-4 0.9550 8.703e-3 0.8549
� 159 3.07e-4 0.9739 5.572e-3 0.6433
� 319 1.55e-4 0.9860 3.412e-3 0.7076
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Fig. 13. Interface is C1 but not C2 and u is piecewise H2 and has a singular point at (0,0).

Table 7
About 1.6th order in u and 0.65th order in ru.

nx � ny Err in U Order Err in rU Order

81 � 41 1.255e-3 1.280e-2
161 � 81 3.99e-4 1.6532 7.945e-3 0.6880
321 � 161 1.30e-4 1.6179 4.976e-3 0.6751
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Example 8. The level-set function /, the coefficients b± and the solution u± are given as follows. The interface is Lipschitz
continuous and it has a kink at (0,0), u is piecewise C2:
/ðx; yÞ ¼ y� 2x; xþ y > 0
/ðx; yÞ ¼ yþ x=2; xþ y 6 0
bþðx; yÞ ¼ ðxyþ 2Þ=5;

b�ðx; yÞ ¼ ðx2 � y2 þ 3Þ=7;
uþðx; yÞ ¼ 8;
u�ðx; yÞ ¼ sinðxþ yÞ; xþ y 6 0
u�ðx; yÞ ¼ xþ y; xþ y > 0
Fig. 14 shows the numerical solution with our method using an 81 � 41 grid. Table 7 shows the error on different grids.
Example 9. The level-set function /, the coefficients b± and the solution u± are given as follows. The interface is Lipschitz
continuous and it has a kink at (0,0), u is piecewise C1:
/ðx; yÞ ¼ y� 2x; xþ y > 0
/ðx; yÞ ¼ yþ x=2; xþ y 6 0
bþðx; yÞ ¼ ðxyþ 2Þ=5;

b�ðx; yÞ ¼ ðx2 � y2 þ 3Þ=7;
uþðx; yÞ ¼ 8;
u�ðx; yÞ ¼ sinðxþ yÞ þ cosðxþ yÞ; xþ y 6 0
u�ðx; yÞ ¼ xþ yþ 1; xþ y > 0
Fig. 15 shows the numerical solution with our method using an 81 � 41 grid. Table 9 shows the error on different grids.
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Fig. 14. Interface is Lipschitz continuous and it has a kink at (0,0), u is piecewise C2.
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Example 10. The level-set function /, the coefficients b± and the solution u± are given as follows. The interface is Lipschitz
continuous and it has a kink at (0,0), u is piecewise H2:
/ðx; yÞ ¼ y� 2x; xþ y > 0
/ðx; yÞ ¼ yþ x=2; xþ y 6 0
bþðx; yÞ ¼ 1;
b�ðx; yÞ ¼ 2þ sinðxþ yÞ;
uþðx; yÞ ¼ 8;

u�ðx; yÞ ¼ ðx2 þ y2Þ5=6 þ sinðxþ yÞ
Fig. 16 shows the numerical solution with our method using an 81 � 41 grid. Table 10 shows the error on different grids.
From Tables 6–10 we conclude the order of the error in u and ru, listed in Table 11
Compared with [4], when C is C1, our order of accuracy is consistent with [4], and when C is Lipschitz continuous, our

order of accuracy is higher than [4]. Besides, for the same grid size, our error is consistently smaller than [4], thanks to
our more elegant quadrature formula discussed in Section 3.
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Fig. 15. Interface is Lipschitz continuous and it has a kink at (0,0), u is piecewise C1.
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Fig. 16. Interface is Lipschitz continuous and it has a kink at (0,0), u is piecewise H2, and has a singular point at (0,0).

Table 8
About 2nd order in u and 1st order in ru.

nx � ny Err in U Order Err in rU Order

81 � 41 3.7e-5 5.79e-4
161 � 81 1.0e-5 1.8875 1.76e-4 1.7180
321 � 161 3.0e-6 1.7370 9.2e-5 0.9359

Table 9
About first order in u and 0.7th order in ru.

nx � ny Err in U Order Err in rU Order

41 � 21 7.166e-3 3.036e-2
81 � 41 3.757e-3 0.9316 2.031e-2 0.5800
161 � 81 1.922e-3 0.9670 1.244e-2 0.7072
321 � 161 9.73e-4 0.9821 7.270e-3 0.7750

Table 10
About 1.5th order in u and 0.65th order in ru.

nx � ny Err in U Order Err in rU Order

41 � 21 4.940e-3 4.698e-2
81 � 41 1.745e-3 1.5013 2.978e-2 0.6577
161 � 81 6.06e-4 1.5258 1.886e-2 0.6590
321 � 161 2.09e-4 1.5358 1.194e-2 0.6595

Table 11
Conclusion of numerical experiments.

C is C1 C is Lipschitz continuous

u is C2 2nd order in u and 1st order in r u 2nd order in u and 1st order in ru
u is C1 1st order in u and 0.8th order in ru 1st order in u and 0.7th order in ru
u is H2 1.6th order in u and 0.65th order in ru 1.5th order in u and 0.65th order in ru
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Example 11. Our final example is a ‘‘happy face” interface and matrix form b±, with lower order terms p,q present. The level-
set function /(x,y), the coefficients b±(x,y), p±(x,y), q±(x,y) and the solution u±(x,y) are given as follows:



Table 1
Happy

nx �

40 �
80 �
160
320
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/ðx; yÞ ¼maxðminð/1;/2;/3Þ;/4;/5;/6;minð/7;/8ÞÞ;
/1ðx; yÞ ¼ x2 þ y2 � 0:752 � 0:152;

/2ðx; yÞ ¼ ðx� 0:75Þ2 þ y2 � 0:152;

/3ðx; yÞ ¼ ðxþ 0:75Þ2 þ y2 � 0:152;

/4ðx; yÞ ¼ �
0:1

0:12
ðx� 0:2Þ2 � 0:12

0:1
ðy� 0:22Þ2 þ 0:12 � 0:1;

/5ðx; yÞ ¼ �
0:1

0:12
ðxþ 0:2Þ2 � 0:12

0:1
ðy� 0:22Þ2 þ 0:12 � 0:1;

/6ðx; yÞ ¼ �x2 � ðyþ 0:08Þ2 þ 0:122;

/7ðx; yÞ ¼ �x2 � ðyþ 0:625Þ2 þ 0:4252;

/8ðx; yÞ ¼ �x2 � ðyþ 0:25Þ2 þ 0:22;

bþðx; yÞ ¼
xyþ 2 xyþ 1
xyþ 1 xyþ 3

� �
;

b�ðx; yÞ ¼ x2 � y2 þ 3 x2 � y2 þ 1
x2 � y2 þ 1 x2 � y2 þ 4

 !
;

pþðx; yÞ ¼
xy

x2 � y2 � 1

� �
;

p�ðx; yÞ ¼ x2 � y2

2xy� 1

 !
;

qþðx; yÞ ¼ x2 þ y2 � 2;
q�ðx; yÞ ¼ xyþ 1;

uþðx; yÞ ¼ 5� 5x2 � 5y2;

u�ðx; yÞ ¼ 7x2 þ 7y2 þ 1
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Fig. 17. Happy face.

2
face.

ny Err in U Order Err in rU Order

40 5.931e-3 5.121e-2
80 1.669e-3 1.8293 2.757e-2 0.8933
� 160 4.51e-4 1.8878 1.686e-2 0.7095
� 320 1.24e-4 1.8628 8.940e-3 0.9153
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Fig. 17 shows the numerical solution with our method using a 41 � 41 grid. Table 12 shows the error on different grids. The
numerical result shows second order accuracy in the L1 norm for the solution and first order accuracy in the L1 norm for the
gradient.
5. Conclusion

In this paper, we generalized the previous work in [4] to solve matrix coefficient second order elliptic equations with low-
er order terms present (see Example 11) for interface problems. We provided proofs for the generalized version of theorems
in [4]. We also proved that the matrix for the linear system generated by our method is positive definite (but not symmetric).
Through numerical experiments, our method achieved second order accuracy in the L1 norm, and we can handle the diffi-
culties of sharp-edged interfaces and oscillatory solutions. Compared with the previous work in [4], we improved the order
of accuracy for sharp-edged interfaces from 0.8th to close to second order, see Example 4. Compared with the result in [19],
the more oscillatory the solution is, the more advantageous our method is, see Examples 1–3. The orders of accuracy for solu-
tions and interfaces of different regularity are listed in Table 11.
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